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ABSTRACT

A method is developed for sizing the structural truss

members of a dish antenna inww to assure retention of

paraboloidal form and constant focal length during external load-

ing. This method can be modified to suit other structural forms

and deformation requirements. Since this method is most easily

applied to statically determinate structures, a short discussion

on the synthesis of rigid, firmly anchored, statically determinate

trusses is given.
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LIST OF SYMBOLS

b number of bars

r support force components

s number of support points

j number of socket joints

X deflection in the X-direction

F external force per unit volume

C appropriate influence function

Y deflection in Y-direction

Z deflection in Z-direction
1 reciprocal of the unknown bar cross-sectional areas

R radial deflection

Z i, R i  axial and radial deflection respectively at point i

Fzj Frj axial and radial components, respectively of the

external force applied at point j

P k tensile or compressive load in bars k

Lk length of bars k
S k  cross-sectional area of bars k

nk number of bars of type k

ni , n number of points of type i or j

Uk elastic strain energy stored in bar k

1 dis+ance from vertex to focal point of dish

E Young, s Modulus
6 k axial deflection of each bar

Tz, T r  load coefficients, axial and radial respectively

Hk defined by eq. (8) p. 23

A beam cross-sectional area
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INTRODUCTION

Recent investigations of dish antenna design innovations

at the M. I. T. Instrumentation Laboratory have included studies

into the benefits of controlling structural deformations under

gravity and wind loads. For example, the idea of heating the

members of a truss structure to hold their lengths constant

under slowly varying loads has shown considerable promise. *

Such a control system would be ineffective against rapidly varying

loads, such as those due to wind gusts, because of the thermal

lag of the structure.

As a possible approach to this latter problem, it was

decided to study the feasibility of sizing the structural members

relative to each other so that, under given loading conditions,

the paraboloidal shape would be retained. It is clearly impossible

to design a structure which can maintain its shape under a wide

variety of load configurations; however, the idea of controlling

deformations by properly sizing the structural members relative to

each other has a practical application in two rather general design

situations:

a. The situation in which the external loads can be

restricted to act primarily in one configuration

with respect to the structure.

b. The situation in which the external loads are

mainly predictable with respect to configuration

and frequency of occurrence. In this case,

using statistical methods, the structure can be

sized to minimize the standard deviation of

some selected deformation-induced error.

G-as, Ranulf W. , An "Infinite Stiffness" Structural Member
Dimensional Stabilization of a Variable - Load Structural-
Member, Report R-271, (Instrumentation Laboratory,
Massachusetts Institute of Technology, Cambridge,
Massachusetts, March 1960).
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This report develops a method for treating the ball-jointed

truss structure, and follows through to a solution for only the

symmetrical loading configuration which results from a wind

blowing parallel to the axis of the paraboloid. However, the
discussion points out the means for performing the modifications

required to extend the method to other structural forms.

DESCRIPTION OF THE PROBLEM

The antenna corqfiguration to be treated has been selected
for the attention of structural and thermal control system design
studies. While not optimum, this configuration is sufficiently
realistic to serve as a valid example for a test solution as well
as a model with which to illustrate the analytical procedures.

Figure 1 shows the essential features of a ball-jointed

truss whose function is to support the reflecting surface material.
Note that the geometrical configuration consists of nine equal

truss sectors connected to a center post. The dish is 60 feet in
diameter and has a focal point 24 feet from the vertex of the
paraboloid. Table I provides detailed dimensional data. The
bar types are numbered 1 through 12, there being eighteen each

of types 1, 2, 3, 4, and 6, and nine each of the other seven types.
Note also that joints (1) through (6) are contained in the paraboloidal

surface and are repeated nine times each. The bars connecting

these points are shown by solid lines. The bars running from the
surface of the dish to points (7) located behind the dish are shown

by dashed lines. In Fig. 1 the arrangement of bars in a plane
containing the dish axis and a single joint of each type is also

shown.

A critical design feature, the method by which one should

attach the antenna truss to the base, cannot be determined without

knowledge of the antenna application. This feature, in addition
to the connections with the center post and the type of truss joints,

will define whether or not the structure is rigid and statically

8
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Table I

Dimensional Data for Sample Antenna

Table Ia Bar Lengths and Angles from Dish Axis

Bar Type Length (Ft) Angle from Dish Axis (deg)

1 10. 242 55.90

2 14.902 72.42

3 13. 699 41. 60

4 12. 141 71. 37

5 13. 015 67. 40

6 20. 722 47.00

7 19. 178 42. 62

8 8.016 61. 12

9 11.853 30.22

10 13. 015 67.40

1i 13. 904 71.13

12 4.882 81.22

Table Ib Angles Projected in Plane Normal to Dish Axis

(Note: For example, the angle 4(3)8 is formed at joint (3) between

the projections of bars 4 and 8 in the plane normal to the dish axis.)

Angle Degrees

8 (6) 6 22.6

11( 3) 3 39.8

8 (3) 4 63.1

11 (2) 2 33.7

11 (2) 1 43.4

5 (O) 1 23.4

9 )6 42.6

9 () 3 59.8

9 (4) 2 13.7

7 (5) 4 43. 1
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determinate. A statically determinate structure is one whose

load distribution and support reactions can be calculated from

external forces using only force-balance equations. For such a

structure, the number of unknown loads and support reactions

equals the number of independent force-balance equations. A

rigid truss of this type can be assembled on a pre-fabricated

foundation with pre-cut bars of imperfect length and straightness.

Its joints and support points must be of a type which will permit

connection of these imperfect members to each other and to

the supports without inducing stresses. The effect of imperfect

sizing will modify the geometry only slightly. A firmly anchored,

rigid, three-dimensional truss having j-ball and socket joints,

s-support points, r-generally non-zero support reaction force

components, and b-bars must satisfy the relation,

b +r = 3(j + s) (1)

in order to be statically determinate. This equation, which is a

necessary but not sufficient condition, results from the fact that

three force-balance equations can be written at each joint and

support point in order to solve for b-axial bar loads and r-support

force components. The above relation also assumes that the

support points cannot exert bending moments on the bars

which are connected to them. They may be of the ball-on-a-plane,

ball-in-a-groove or ball-in-a-socket type for which r equals one,

two or three, respectively.

A determinate structure has the advantages of rapid assembly

from prefabricated parts and stress-deformation analyses

which are at once valid and straightforward. However, an indeter-

minate structure (for example, one using riveted or wrlded joints

and many support points), while difficult to analyze and construct,

may offer somewhat higher stiffness-to-weight ratios. This ad-

vantage does not appear significant when the thermal control system

and prescribed deformation concept can be effectively applied.
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In the analysis made in this report, the unresolved antenna

design problems cited above are conveniently side-stepped by

assuming a symmetrical external load configuration and a

symmetrical structure.

The symmetrical load will be assumed to be that due to

a wind along the dish axis which will exert axial and radial force

components on the dish surface that are functions only of the

distance from the axis. No torque will be exerted on the center

post. Therefore the question of how to restrain rotations of the

center post with respect to the truss may be left open. Similarly,

it will be assumed that the antenna is supported on all points (7)

which can roll on one plane or in co-planar radial grooves. The

symmetry of the truss and external load will then permit the

assumption of equal reaction forces at all points (7).

To illustrate how one might configure a rigid, determinate

antenna structure which can be firmly anchored, consider the

center post to be a rigid support column. To prevent rotation of

the truss around this column, replace the nine bars 12 by nine

pairs of bars, each pair running from a joint (2) to the two nearest

joints (1). Let all joints and support points be of the ball and socket

type. Then b= 162, j=54, s=18 and r=3 x 18 = 54. Note that

Eq (1) (a necessary but not sufficient condition) is satisfied.

One might also configure a suitable structure resting on

ball and socket supports at all points (7) (s = 9, r = 27). For example,

the center post and all bars 5 and 10 could be eliminated. All

bars 12 would then come together at a single center joint consti-

tuting the vertex of the paraboloid. This vertex would then

need to be restrained from axial motion by joining it to three of

the support points with three equally spaced bars. A symmetrical

structure having 138 bars and 46 ball joints would result. Again,

the necessary relationship, Eq (1), would be satisfied.
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The determinate truss has been stressed in this section

because the analytical work which follows applies to this kind

of structure, for which the loads can be calculated in advance

of any decisions with respect to the sizing of the individual bar cross-

sectional areas. It will be shown, however, that the method

given is readily extended to indeterminate structures at the

expense of greater complexity.

ANALYTICAL APPROACH

The problem of design for prescribed deformations has

been approached as follows

1) Given a linear, elastic structure of specific geometry

and subjected to a load distribution of prescribed

form, it is observed that:

a. The form of the deflection distribution is a

function only of the form of the stiffness

distribution. In the determinate truss structure

this form is manifested in the relative cross-

sectional areas of the bars.

b. The total deflection or amplitude of the deflection

distribution is determined by the amplitudes of

the load and stiffness distributions and the length

of a representative dimension. In other words,

for the antenna truss, the diameter of the dish and

the actual cross-sectional area of any bar

determine the scale factor relating the amplitude

of the deflection distribution to the amplitude of

the load distribution.

For the antenna problem, any convenient diameter, load

distribution magnitude and reference bar cross-sectional area

may be used. The solution will be in the form of a set of bar

cross-sectional areas which assure the desired deformational

form under the prescribed loading configuration.

13



2) Next it is noted that for a linear, elastic structure,

the deflection at any point can be written as a linear

combination of the external loads at all points on the

structure. Most generally this relationship can be

expressed by a Fredholm integral equation of the first

kind which takes the form:

X(x, y, z) = M'(x, y, z; ,-d~dd (2)

For example if, X were the deflection in the X direction

at (x, y, z), F would be the external force per unit volume and

C the appropriate influence function.

For the antenna truss, which is loaded at discrete points

with concentrated loads, it is more appropriate to employ

the matrix form of the integral equation:

fx} = [C xxJ Fx}+ ICxy] fF Y)+ ICxz fFz) (3)

Then {X) would be a column matrix whose i elements represent

the deflection in the direction of the x axis at i selected points. The

force component column vectors, {FxI tFy} and fFz}, would

each have j elements expressing the x, y, and z components,

respectively, of the external forces at the j loading points. The

influence coefficient matrices would then be rectangular and of

order i by j. From the discussion given above, it is expected that

the matrix equatiohs will express the desired deflection /bar

cross-sectional area relationships.

3) Finally, it remains to determine the stiffness distribution

which will result in the prescribed functional form

of the deflections. That is, the satisfaction of one

or more relations of the following form is required:

f(X, Y, Z) =0 (4)

The functions, X, Y, and Z are taken to represent the deflections

in the x,y, and z directions, respectively.
14



In the general case this final step requires the solution

of integral equations for the necessary influence functions,

which in turn lead to the stiffness distribution.

Fortunately, in the truss example, the solution is far

more easily arrived at. The matrix equations, such as Eq (3)

which relates deflection to force, will, after computation of

influence coefficient matrices, reduce to the following form

which expresses each deflection as a linear combination

of the reciprocals of the unknown bar cross-sectional areas:

Ky S

Zj =[K ] f '

Substitution of these equations into the relationships

such as Eq (4) required to exist among the deflections them-

selves will result finally in a set of simultaneous equations

which may be solved for the necessary cross-sectional areas.

DEVELOPMENT OF EQUATIONS

In this section, the equations applicable to the symmetrically

loaded antenna truss will be developed. It is convenient to use

fixed polar coordinates centered at the intersection of the dish

axis with the plane containing the support points. The z-axis

is taken coincident with the dish axis and pointing toward the

rear. The r-axis is then located in the plane of the support

points. Axial and radial deflections are then denoted by Z and

R, respectively. Table II defines the terminology used. The

first step will be to develop the force/deflection equations, a

task which mainly consists of the determination of the influence

coefficient matrices. The final equations are then obtained by

substituting these results into the prescribed deformation re-

lationships.

15



1. Force/Deflection Equations

The discussion of the analytical approach, already

given, indicates for the symmetrical condition 'force/ deflection

equations of the form:

{z)I = [C zz J[fFz + V Zr](FrI(5

{RJ = [Crz ]FzJ +[CJrr]fFJ

Table II

Terminology Undefined in the Text for the

Antenna Truss Equations

Z i, R i axial and radial deflections respectively at point i

Fz., F axial and radial components, respectively, of the
Z. r.
J external force applied at point j.

P k tensile or compressive load in bars k

Lk length of bars k

Sk cross-sectional area of bars k

nk number of bars of type k

ni, n. number of points of type i or j, respectively

U k  elastic strain energy stored in bar k

1 distance from vertex to focal point of dish

In examining a typical element of an influence coefficient

matrix, for example, C zr . , this term is recognized to be the

influence coefficient which gives the z deflection at point i, Z i,

due to a unit radial external force at pint j.

For the symmetrical problem, the algebra may be

simplified by considering groups of similar poin's. If, for

example, each joint in the truss were to be considered individually,

16



i and j would take on all positive integral values up to 72.

Furthermore, the calculation of individual influence coefficients

would be more laborious because a single load at one point

would cause unsymmetrical deformation. In the present case,

however, it is known that all points of the same type will be

subjected to equal loads and equal deflections. Hence, Czr..
1J

will be considered to be the z deflection of each of the nine

joints of type i due to unit radial loads at each of the nine joints

of type j.

A similar form of definition, of course, will apply to the

elements of the other three influence coefficient matrices.

2. Calculation of the Influence Coefficients

The most direct approach to the calculation of C zr..

might be considered the following: 1)

a. Calculate all bar loads Pk due to the application

of unit external radial forces at all points j.

b. Knowing all P calculate the axial deflection

of each bar (call this 6k) from the well-known

formula:
6k = PkLk/SkE (E = Young's Modulus)

c. Using geometrical considerations find the deflection

of all joints in the truss.
This procedure will yield Czr and C for all i.

A close inspection of the antenna configuration will, however,

convey a distinct sense of the difficulties associated with step c.

A more convenient approach utilizes the energy conservation

principle in equating the work done on the structure by external

forces with the strain energy stored in the deformed structure.

The formal statement of this principle applied to linear, elastic

structures is known as Clapeyron's Law. The elastic strain

17



energy due to tension or compression in a typical bar is given

by:

Uk =2\ Lk /6 2 = P 2 L /2Sk E

kU k k k k k

Note that SkE/Lk is the bar stiffness constant expressing the

ratio of force to deflection. The total strain energy stored

in the antenna truss under symmetrical loading is given by:

U =2Z nkLkP k/Sk

k

The bar loads, P can be calculated in terms of load

coefficients Tzk j or Trkj which are defined as the loads in all

bars of type k due to unit axial or radial external forces, respectively,

applied at all nine joints of type j. These load coefficients are

positive for tensile bar loads and negative for compressive

bar loads. They are calculated from a structural load analysis

which, for determinate structures, can be carried out beforehand

without regard to deflection considerations. For example,

T can be found for all k by calculating all the antenna bar
Z kj

loads due to unit external axial loads applied simultaneously at

all nine joints j. The three independent static force balance

equations are then solved at each joint. This tedious procedure

was carried out on the IBM 650 computer in a few minutes for the

sample problem. Table III contains the computed load coefficients.

Calculation of the total bar loads from the load coefficients is

conveniently expressed by the matrix equation:

{P) z [T] IF} + [Trl IFr) (6)

Now one may apply Clapeyron's Law to find the influence

coefficients. Assume the antenna is first loaded with unit axial

loads at all points j. The work done by these loads is given by:

18



Table III

Load Coefficients Computed for the

Sample Antenna Truss

(computer data rounded off to two decimal places)

[T z ]
zkj

k/j 1 2 3 4 5 6 7

1 0 -. 77 .13 .11 .09 .25 0
2 0 0 0 .39 0 0 0
3 0 0 -.- 87 0 . 35 .40 0
4 0 0 0 0 1. 16 0 0
5 -1.30 .44 -. 21 -. 33 -. 67 -. 59 0
6 0 0 0 0 0 -1.62 0
7 0 0 0 0 -2. 36 0 0
8 0 0 0 0 0 2.49 0
9 0 0 0 -1. 43 0 0 0

10 1.30 .81 -. 63 -. 63 -. 97 -1.42 0
11 0 0 .94 0 .67 1. 87 0
12 0 -. 93 1. 06 .75 .75 2. 10 0

T,

kj

k/j 1 2 3 4 5 6 7

1 0 -. 12 .19 .18 .10 .26 0
2 0 0 0 .67 0 0 0
3 0 0 -. 30 0 . 38 .40 0
4 0 0 0 0 1. 26 0 0
5 0 27 05 - 02 -. 18 -. 16 •54
6 0 0 0 0 0 -. 89 0
7 0 0 0 0 -1.09 0 0
8 0 0 0 0 0 2. 52 0
9 0 0 0 -. 47 0 0 0

10 0 -. 08 -.. 57 -. 53 -. 51 -1. 01 .54
11 0 0 1. 38 0 .73 1.89 0
12 0 .87 1.55 1,29 .82 2. 13 0

19



2 zz z

The factor of 1/2 exists in this term because, to prevent

imparting kinetic energy to the truss, the loads are applied

slowly, thus causing a linear load-deflection curve. The work
input, which is given by the integral of force with respect to

displacement in the direction of the force, is the area under

this curve which increases linearly from the origin to the point

(nj, C zz). Equating work input to stored energy, one obtains:

riC'I (nL )

- zzj = k Lk/Sk)T Z k j

If instead the antenna had been loaded with radial loads at all

points j, the same expression would have been obtained with

z replaced by r.

If one continues to apply the unit axial loads at points j

and now adds unit axial loads at all points i, additional work is

done on the structure of the amount:

11
I n.iC + n. C

1 1 zz ii J zz ji

The first term is the work done by the new loads. The second

term is the work done by the original loads while they move

through displacements caused at points j by the new loads at

points i. Cldpeyron's Law applied to the new situation then requires:

I n.C + _Ln.C + n. C2 zz jj 2 i zz j Czzji

n L /S ( T )2

- 2E _KnkLk/Sk) (Tz + Z

20



Reversing the procedure by applying loads first at i and then at

j would, of course, result in the same strain energy. The work

done would in this case be expressed by the left-hand side of the

above equation with the subscripts i and j reversed. Hence, it

would be evident that,

n.C =n.C3 zz 1 zzij

Note also that the above equations permit calculation of Czz..

and Crr.. explicitly.
13A similar argument tracing the work inputs when the truss

is loaded, first axially at points i and then radially at points j,

leads to the equation:

1 1C + 2n. C +n.CCzzii J rr j 3  zrij

- (nk Lk / Sk ) (T + T 2
k Zki kj

Reversing the loading procedure by applying the radial loads

at points j first leads to the equality,

n.C n. C1 zrij J rzji

This equation, which has already been proved valid when z re-

places r (orvice-versa) is a manifestation of Maxwell's Law

of Reciprocal Deflections, a corollary of Clapeyron's Law.

A general expression for the influence coefficients is then

given by the following equation:

12
n - nk L k

- k i r (7)zrij Eni k=l Sk ki kj

21



In this equation one merely substitutes r for z and/or z for r

whenever necessary in order to express the desired coefficient.

3. Deflection / Bar Stiffness Equations

Substitution of the explicit solution just found for the

influence coefficients into the force/deflection equations (5) leads

to the following:

kk

Z i - -- iF=S T T
k Zki ZkJ

nkLk

+ r k L k r Tr

r k k Ski r kj

knk
+ Fr F Sk Trki

1 k rk k

Reversing the order of summation and recognizing the factor,

(Tz Fz + T F)rj

. rk 3

22



one finds:

z 1 n kL k PkT
1 kki

1 k k P k iZ nkLkPk

iS k rki

kk

The chosen problem is only concerned with the loads and
deflections at points (1) through (7) inclusive. Hence, ni

is a constant equal to 9. Also note that k takes on all positive

integral values from 1 through 12, inclusive. It is convenient to

define a new variable,

nL k

k  iES (8)

which has the dimensions of a compliance coefficient and which

contains the unknown bar cross-sectional area explicitly. Then:

(Z) Tz TIT [PknHk)

(9)

{ R} Tr ] T PkHk)

(Note that the superscript T denotes the transpose of the matrix.

4. Prescribed Deformation Relationships

The paraboloidal surface of the antenna is given by:

z = z (0) - r 2 /41

23



The requirement that the focal length remain constant after

deformation dictates that the deformed surface be given by:

z + Z =z(0) + Z (0) - (r + R) 2 /4

Taking the difference between these two equations and neglecting

the higher order R2 term, one obtains the functional relationship

which must be satisfied by the deformed truss in order to

maintain constant focal length:

Z - Z (0) + rR/2 = 0 (10)

In terms of the six joint types on the dish surface, Eq (10)

requires:

z -2 zI + r 2R2/21= 0

Z 3 Z 1 +r3 R 3/2- 0Z33

S + r 6 R 6 /21 = 0

Z 3 - Z 4 =0 ()

R 3  R R 4 =0

Z 5 - Z6 =0

R 5  6 -0

5. Final Equations

Substitution of the deflection/bar stiffness equations,

24



Eq (9), into the prescribed deformation equations, Eq (11), will

now yield .seven linear algebraic equations. Since there are

twelve unknown bar areas, it is clear that one may, in principle

at least, arbitrarily set five bar areas and solve for the remaining

seven. In the sample problem, it was decided to set the cross-

sectional areas of bars 8 through 12 so that they would undergo

equal stress. Since these bars were the ones carrying the greatest

loads, this decision seemed reasonable. It was then required that:

IP k/S kj P 8/S 81for k = 9, 10, 11, 12

Recalling the earlier discussion that only the relative bar areas

need to be considered, H8 is arbitrarily set equal to 1. It then

follows that:

kn k Lk5 P8

, 2 k 8 for k = 9, 10, 11, 12
k n 8 L 8  P k

The seven simultaneous linear algebraic equations in

Hk may then be expressed in the matrix form,

(C fH} {Dj (12)

the coefficients for which are computed from the following equations:

Clk - (T - T + T) PZk2 'I 2--Z rk2 k

12

DI " C kHk

k=8

25



C k(T k3 +-T 3T

12
D2-Y, C~kHk

k=8

C z(T -T + r 6 T P~3k zkH6 ki k6r

12

D3 1 3k Hk
k=8

c 4 k (T -UT zk

12

D 4 c4k Hk
k=8

5 k r k3 r k4 k

12

D 5 1c 5k H k
k-8
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12

C6k ZTk5 - TD 6  C 6 kHk
k-=8

12
C k(T rk5 - T r 6) P k D D7 1,_., HC 7 k -rT6T)P D 7 --- ° C 7 kHk

k=8

DISCUSSION OF RESULTS

The computer program employed the Gauss-Jordan Reduction

procedure to solve equations (12). All the numerical results for the

sample problem are shown in Table IV. Note that there is an

infinite variety of solutions available so long as five bar types

may be specified arbitrarily at the outset. The particular

choice of H8 . . . .. . H12 used in the sample problem was obviously

not practical because the resulting solution for H 6 and H 7 turned out

to be negative (a physical impossibility). It is obvious, however,

that further work with the sample problem, although not warranted

at this time, will lead to a large number of practical soultions.

The "best" solution in any particular case depends upon

conditions of the problem which are not properly dwelt upon here.

It would be judicious to select five bar types whose cross-sectional

areas may most profitably be influenced by other important

considerations. One might then explore how the solution for the

other seven bars depends upon each of the five independent bars

taken one at a time. If, for example, bars 8 through 12 were to be

sized primarily by other considerations, one could solve for:

aHk/ aH 8 , aHk/aH 9 , . . ..Hk/aH 1 2 (k - 1, 2, .... 7)

This would be accomplished by solving the equations (12) five times,
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Table IV

Numerical Results in the Sample Antenna Problem

(computer data rounded off to two decimal places)

F F F F F F FzI  z2  z3  z4  z5  z6  z7

.38 2,74 2.74 2.74 1.26 1.26 0

F F F F F F F
r1 r2  r3  r4  r5  r6  r7

.04 ,56 1.31 1.31 .79 .79 0

PI P2 P 4 P5 P6

-. 32 1. 94 -1.22 2. 44 -2.42 --2.73

P 7  P8 P9 P10 P11  P 12

-3. 83 5. 11 -4. 52 -6. 40 9. 65 12. 53

HI H 2  H3  H 4  H 5  H6

236. 78 9. 31 13. 21 5. 45 14.13 -3. 99

H7  H 8  H9  H10  H11 H12

-1.92 1.00 1.67 1.30 .92 25

ZI/H 8  Z2 /H8  Z 3 /H 8  Z 4 /H8 Z 5 /H8  Z6 /H8  Z7 /H8

33.68 33. 06 28. 48 28. 48 24. 59 24. 59 0

RI/H 8  R2 /H8  R3/H 8  R4 /H8 R 5 /H8  R 6 /H8  R 7/H8
0 3.05 10.86 10. 86 14. 55 4 55 -23. 01

Note: The force at each joint is taken normal to the dish

surface, and the total axial force is arbitrarily set

at 100 pounds,
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each time with only one member of the group, H8 . . . H12 non-

zero. Then H1 .. . . H7 could each be expressed as a linear

combination of H8 .. . . H12, which could be selected to keep all

sizes physically practical, to restrain total deflections within
reasonable bounds, to minimize total weight and/or to account

for a host of other pertinent considerations.

EXTENSION OF ANALYSES TO DIFFERENT APPLICATIONS

1. Unsymmetrical Loading of'the Antenna Truss

In developing equations for the general unsymmetrical

loading condition, it is clearly necessary to distinguish each

bar and loading point individually. The sheer magnitude of the

problem then demands solution by means of a digital computer

having a large storage capacity. For example, if there are j
loading points, i points whose deflections are required and b
bars, one can expect to encounter the following:

a. Three load coefficient matrices (for axial, radial

and tangential loads) having b rows and a column

for each point which is either a loading point or a
point whose deflection is required.

b. Eighty-seven final equations relating the axial and
radial deflections of all points on the surface of the

dish so that the paraboloidal shape and focal length
are preserved. Note that tangential deflections are

not important as long as they are small. Each

coefficient in the equations would be computed as
the sum of b terms.

2. Other Structural Forms

The analytical approach already described applies to

all linear, elastic structural forms. The influence function,
therefore, must be expressed in terms of the unknown structural

characteristics. When, as in the usual case, the influence function

is so complex that it cannot be extracted from the integral equation,
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Eq (2), two alternatives are available:

a. Adopt a trial-and-error approach until the influence

function is found which results in the prescribed

form of the deformation; or,

b. Adopt the matrix form of the integral equation and
accept the limitation of prescribing only the deflection

of several points. In principle this procedure

leads to a direct solution for the influence coefficient

matrices.

The relationships between the influence functions (or

coefficients) and the strength characteristics of various structural

forms such as beams, plates, etc. , are amply discussed in the

literature. They are derived from the basic stress-strain differential

equations by integrating the equations or by working with integrated

forms of the equations (such as Clapeyron's Law).

3. Indeterminate Structures

Indeterminate structures- are more complex to analyze

because their deflections and internal loads must be obtained

simultaneously. The following simple problem should illustrate

this point. Fig. 2 illustrates a simple beam loaded by the external

force, F, and supported in a determinate fashion by a pin at one

end and a roller at the other. Static equilibrium clearly requires

the satisfaction of three equations expressing the balance of

forces and moments in the plane of the figure. The reactions

Hl V1 and V2 are then immediately obtained as are the internal

loads (bending moment, shear force and axial force) at all

stations along the beam.

On the other hand, Fig. 3 illustrates an indeterminate

beam supported by a pin at each end. In this case, static

equilibrium considerations only give V l , V2 and the sum,

HI + H Even assuming the beam is pinned in place without

pre-stressing it, one must consider the axial deflection of the

beam before Hi, H 2 or the internal axial loads can be obtained.
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To do this, equate the stretching of the left end of the beam

(of length L1 and internal tensile force T1 ) with the compression

of the right end of the beam (of length L 2 and internal compressive

force, C 2 ).

H1 "-- F --. T1 C2H-L L H H2

One then has the equations:

HI + H2  F cos e

T1 H 1

C 2  H2

61= T 1L 1 / AE A = beam cross-sectional area

62= C 2 L 2 / AE) E = Young's modulus

61 62

Solution of these equations yields(assuming no pre-loading):

H F cos 0 H F cos 0
1 + L1  2 1.. L2

1+ -- 1 -----

L2 L1

Note, however, that the computations necessary to determine

the :nfluence function relating axial deflection to external axial

load have already been performed. If this influence coefficient

is denoted by C (x, ), and the following diagram is referred to,
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4Y

-x -C _ (x, )

one sees that:

x (--c)C (x, g)--E0=x-

C (x, ) ( -x), _

IAE

When the right end is supported on a roller, as in the

original determinate case:

C (x, 0 - A g

This example bears out the previous contention that indeterminate

structures ai e generally stiffer than determinate structures of

the same size

In more complex examples one must employ more

involved relationships among the deflections in order to reach a

solution, For example, in the case of an indeterminate truss

having welded joints; it is necessary to express the preservation

of the angles between pairs of bars where 'hey come together at
the rigid joints,
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The preceding discussion is intended to convey some

appreciation of the manner in which one might go about analyzing

an indeterminate structure for its influence functions. Expression

of the physical restraints (or boundary conditions) on the deflections

in one portion of the structure in terms of the deflections of the

surrounding structure results in a set of equations, which, taken

simultaneously with the equations of static equilibrium, define

all the internal loads and st,'uctural deformations. From the

standpoint of designing for prescribed deformations, the

determinate structure has, in all but the simplest structural

configurations, at least a distinct computational advantage.
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